29 março, 2012

Olbers descobriu o asteroide Vesta há 195 anos

Vesta fotografado pela sonda Dawn em 24 de julho de 2011, a uma distância de 5 200 km

Vesta (designado formalmente 4 Vesta) é o terceiro maior asteroide do Sistema Solar, com um diâmetro médio de 530 km. Foi descoberto por Heinrich Wilhelm Olbers em 29 de março de 1807. O nome provém da deusa romana Vesta, a deusa virgem da casa, correspondente à deusa da mitologia grega Héstia. Está localizado no cinturão de asteroides, região entre as órbitas de Marte e Júpiter, a 2,36 UA do Sol. Vesta é um asteroide tipo V. O seu tamanho e o brilho pouco comum na superfície fazem de Vesta o mais brilhante asteroide (é o único asteroide que é ocasionalmente visível a olho nu).
Teoriza-se que nos primeiros tempos do sistema solar, Vesta era tão quente que o seu interior derreteu. Isto resultou numa diferenciação planetária do asteroide. Provavelmente tem uma estrutura em camadas: um núcleo metálico de níquel-ferro coberto por uma camada (manto) de olivina. A superfície é de rocha basáltica, originária a partir de antigas erupções vulcânicas. A atividade vulcânica não existe hoje.
Em 16 de julho de 2011 a sonda da NASA Dawn entrou em órbita ao redor de Vesta para uma exploração de um ano.
NOTA: a palavra asteroide foi uma das afetadas pelo acordo ortográfico (AO), que nós aqui adotámos (sendo eu professor sou obrigado a aceitar tal aborto...) - anteriormente escrevia-se com acento (asteróide); nas etiquetas que colocamos nos posts continua com acento, pois o acervo anterior é pré acordo (só quando acrescentamos novos termos às etiquetas é que usamos a versão AO).

28 março, 2012

O asteroide Palas foi descoberto há 210 anos

Palas de Pallas (asteroide 2) é o segundo maior asteroide, situado na cintura entre Marte e Júpiter. Estima-se que suas dimensões sejam 558 x 526 x 532 km. A sua composição é única mas bastante similar à dos asteroides do tipo C.
Foi descoberto em 28 de março de 1802 por Heinrich Olbers quando observava Ceres. Olbers, batizou-o com o nome da deusa grega da sabedoria.

História
Em 1801, o astrónomo Giuseppe Piazzi descobriu um objeto que inicialmente confundiu com um cometa. Pouco tempo depois, Piazzi anunciou suas observações deste objeto, notando que seu movimento lento e uniforme, não era característico de um cometa, sugerindo que seria um objeto diferente.
Durante vários meses, o objeto foi perdido de vista, mas posteriormente Franz Xaver von Zach e Heinrich W. M. Olbers o recuperaram, utilizando como base uma órbita preliminar calculada por Friedrich Gauss.
Este objeto foi batizado por Ceres, e foi o primeiro asteroide a ser descoberto.
Alguns meses depois, em Bremen, Olbers estava tentado localizar de novo o asteroide Ceres, quando observou um outro objeto novamente na vizinhança. Era o asteroide Palas, por coincidência passava perto de Ceres naquele tempo.
A descoberta deste objeto causou um grande interesse pela comunidade astronómica: ante deste momento os astrónomos especulavam que devia existir um planeta entre Marte e Júpiter, e Olbers havia encontrado um segundo objecto.
A órbita de Palas foi determinada por Gauss, quando encontrou que o período de 4,6 anos era similar ao período de Ceres. Entretanto, Palas teria uma inclinação orbital relativamente elevada ao plano da eclíptica.
Em 1917, o astrónomo japonês Kiyotsugu Hirayama começou a estudar os movimentos dos asteroides. Observando um grupo de asteroides e baseados em seu movimento orbital médio, inclinação e excentricidade descobriu diversos agrupamentos distintos. Hirayama relatou um grupo de três asteroides associados com o Palas, que os nomeou a Família Palas, usando o nome do membro maior do grupo.
Desde de 1994 mais de dez membros desta família foram identificados (os membros têm um afélio entre 2.50–2.82 U.A.; inclinação relativamente ao plano da eclítica entre 33 e 38°).
A existência da família foi finalmente confirmada em 2002 mediante comparação dos seu espectros.
Palas foi observado ocultando uma estrela, por diversas vezes, incluindo o melhor observação de todos os eventos de ocultação de asteroides em 29 de maio de 1983, quando as medidas do sincronismo da ocultação foram tomadas por 140 observadores. Estes ajudaram a determinar o diâmetro exato.

Comparação de tamanho: os primeiros 10 asteroides com a Lua da Terra - Palas é o segundo da esquerda para a direita

Caraterísticas
Palas é o terceiro maior objeto da cintura de asteroides, similar a 4 Vesta em volume, mas com menos massa. Em comparação, a massa de Palas equivale a aproximadamente a 0,3% da massa da Lua. Tanto Vesta como Palas têm tido o título de "o segundo maior" em alguns momentos da história.
Palas tem sido observado ocultando uma estrela por várias vezes. Medições cuidadosamente dos tempos de ocultação tem ajudado a o dar o diâmetro preciso.
Mas se estima que junto a Ceres são os únicos corpos da cintura de asteroides de forma esférica.
Durante a ocultação de 29 de Maio de 1979 se informou do descobrimento de um possível satélite diminuto com um diâmetro de 1 km. Esta descoberta não foi confirmada. Como curiosidade, o elemento químico paládio (número atómico 46) foi assim batizado em homenagem ao asteróide Palas.

13 março, 2012

Herschel descobriu o planeta Úrano há 231 anos

Sir William Herschel (Hanôver, 15 de novembro de 1738 - Slough, 25 de agosto de 1822) foi um astrónomo inglês nascido na Alemanha.
Filho de um músico da Guarda Hanoveriana - para a qual entrou aos quatorze anos - foi para a Inglaterra em 1757, onde começou a ganhar a vida como músico e organista.
Por volta de 1766, começou a estudar seriamente astronomia e matemática. Em 1781, mais precisamente no dia 13 de março, Herschel descobriu o planeta Úrano (que inicialmente tomou por um cometa). Pouco depois, foi nomeado astrónomo da corte. Em 1787 descobriu dois satélites de Úrano.
A primeira das mais importantes descobertas de Herschel em astronomia foi o movimento intrínseco do Sol através do espaço, em 1783. Observou cuidadosamente o movimento de sete estrelas e demonstrou que estas convergiam para um ponto fixo (que interpretou como sendo o ápex solar).
De 1782 a 1785, Herschel catalogou estrelas duplas e publicou extensos catálogos, no primeiro dos quais sugeriu que muitas delas poderiam estar em movimento orbital relativo. Em 1793, mediu novamente as posições relativas de muitas estrelas duplas, comprovando assim sua hipótese.
Desenvolveu também os primeiros conhecimentos sobre a constituição da Galáxia, além de ter descoberto a radiação infra-vermelha na luz do Sol e algumas notáveis conjecturas a respeito das propriedades dessa radiação.
Sua irmã, Caroline Lucretia Herschel, colaborou estreitamente em seu trabalho, descobrindo também cometas e organizando um catálogo de nebulosas. A tradição astronómica da família ainda continuaria com seu filho (John Herschel) e dois netos. Foi enterrado na Abadia de Westminster.


mmm

Há 26 anos a sonda Giotto passou a 596 km do núcleo do cometa Halley

A sonda Giotto foi uma missão não tripulada da Agência Espacial Europeia - ESA com a finalidade de pesquisar o cometa Halley de perto. Foi lançada pelo foguete Ariane 1 voo V 14, em 2 de julho de 1985. Não se esperava que a sonda viesse a sobreviver ao passar pela cauda do cometa, mas apesar do impacto de algumas partículas, a maioria dos equipamentos continuou a funcionar normalmente. Posteriormente a missão foi estendida agora para interceptar um segundo alvo, o cometa Grigg-Skjellerup.
Em 13 de março de 1986 a sonda Giotto conseguiu se aproximar bastante do cometa, ficando a uma distância de apenas 596 quilómetros do seu núcleo. Quando do encontro, a distância da sonda ao Sol era de 0,89 UA e de 0,98 UA a distância da sonda para a Terra.
A sonda Giotto recebeu este nome em homenagem a um pintor da época medieval denominado de Giotto di Bondone. Ele havia observado o cometa em 1301 e este facto o inspirou a pintar a estrela de Belém na sua pintura sobre a história do Natal.
Estava previsto originalmente que esta missão seria uma missão conjunta entre os Estados Unidos e a ESA, porém devido a um programa de contenções de despesas, os Estados Unidos abandonaram esta missão. Também havia planos de observar o cometa através de um dos voos de órbita baixa de um Vaivém Espacial. Mas o plano foi cancelado devido ao desastre do Vaivém Espacial Challenger.
Havia um plano de se enviar uma armada de seis sondas para pesquisar o cometa. Essa armada era constituída além da sonda Giotto, de duas sondas soviéticas representadas pela Missão Vega, duas sondas do Japão: a sonda Sakigake e a sonda Suisei e por último, a sonda americana ISEE-3/ICE. A ideia era que as duas sondas japonesas, mais a sonda norte-americana fizessem um estudo de longa distância do cometa. Seguidas pelas duas sondas russas, que mirariam suas pesquisas mais para o núcleo do cometa. Todas essas informações seriam enviadas para a sonda Giotto, para ela mais precisamente aproximar do seu núcleo. Este grupo de sondas exploradoras do cometa Halley ficou denominada de Armada Halley.
Como foi previsto que a sonda iria passar muito próximo de seu núcleo de Halley, acreditou-se que a sonda não viria a sobreviver ao impacto de suas partículas em altíssima velocidade.
A sonda possuía um tamanho modesto e tinha uma massa de 960 kg. Seu corpo principal era constituído de um pequeno cilindro de 1,85 metros de diâmetro, com 1,1 metros de altura. Seu interior era constituído de três plataformas. A do topo com uma altura de 30 cm, depois a plataforma principal com 40 cm de altura e finalmente a plataforma de experimentos com cerca de 30 cm de altura. Em cada plataforma eram montados os subsistemas e experimentos. No topo do cilindro estava localizado um tripé que sustentava uma antena direcional de alto-ganho de 1,5 metros de diâmetro, dando a sonda a altura total de 2,85 metros. O principal motor do foguete estava posicionado no centro do cilindro.com o seu tubo de descarga saído por baixo do cilindro.
O maior problema enfrentado pela missão era o de garantir que a sonda pudesse sobrevir o máximo de tempo possível para que pudesse obter fotos e análise do núcleo do cometa, sendo que a velocidade relativa de ambos era de 245.000 km/h.
A sonda Giotto se baseia em um modelo da sonda GEOS. Ela foi construída pela British Aerospace e foi modificada com a adição de um escudo para proteger a sondas das partículas cometárias, proposto por Fred Whipple. Era composto de uma fina cobertura de alumínio de 1 mm de espessura e de uma manta de Kevlar de 12 mm, separados um do outro por um espaço de 25 cm, podendo resistir a impactos de partículas com até 0,1 grama de massa. A sonda Stardust também utilizou este escudo de proteção contra as partículas do cometa Wild 2, que visitou.
Dez equipamentos equipavam a sonda Giotto. Uma câmara teleobjetiva, três espectrómetros, de massa, de neutrões e de íões. Vários detectores de partículas, um fotopolimerizador e um conjunto de experimentos para a análise do plasma.
Todos os experimentos funcionaram bem e retornaram um bom número de informações científicas e forneceram uma importante e clara identificação do núcleo do cometa.
Com 14 segundos antes de seu ponto de maior aproximação, a sonda Giotto foi atingida por uma "grande" partícula de poeira do cometa, que lhe provocou uma rotação de 0,9 graus. Neste ponto os instrumentos científicos passaram a funcionar de forma intermitente, pelos próximos 32 minutos.
Muitos sensores sobreviveram ao encontro com pouco ou nenhum dano. Entre os instrumentos inoperantes incluem os espectrómetros de neutros e de iões, além de um detector de partículas e de um analisador de plasma.
Na sua fase estendida a sonda obteve sucesso no encontro com o cometa Grigg-Skjellerup em 10 de julho de 1992. Chegando a máxima aproximação de 200 km.
Na ocasião, a distância heliocêntrica da sonda era de 1,01 UA, e a distância geocêntrica da sonda era de 1,43 UA.
Para esta nova jornada de pesquisa, os equipamentos da sonda foram ligados na noite de 9 de julho e os operadores da missão ficaram surpreendidos com a boa resposta que obtiveram da sonda.

 
O núcleo do cometa Halley - foto de 13 de março de 1986 da sonda Giotto

Adoração dos Reis Magos - afresco de Giotto

Percival Lowell nasceu há 157 anos

Convencido que havia canais em Marte, foi o fundador do Observatório de Lowell em Flagstaff, Arizona nos Estados Unidos.

Percival Lowell nasceu no seio da distinta família Lowell de Boston. O seu irmão mais novo Abbott Lawrence Lowell foi presidente da Universidade de Harvard, e a sua irmã Amy Lowell era uma bem conhecida poeta e crítica.
Percival Lowell graduou-se na Universidade Harvard em 1876 com distinção em matemática, e viajou intensivamente através do Este americano antes de decidir estudar Marte e astronomia como carreira. Estava particularmente interessado nos supostos canais de Marte, como desenhados por Giovanni Schiaparelli, que foi director do Observatório de Milão e importante astrónomo.
Em 1894 mudou-se para Flagstaff, no estado do Arizona. A uma altitude superior a 2.000 metros (2210 m), e com noites com pouca nebulosidade, era o sítio ideal para observações astronómicas. Nos 15 anos seguintes estudou intensivamente o planeta Marte, fazendo o desenho intricado das marcas da superfície enquanto as tentava perceber. Lowell publicou as suas observações em três livros: Mars (1895), Mars and its Canals (1906) e Mars as the Abode of Life (1908). Desse modo apresentava a opinião de que Marte teria tido formas de vida inteligente.
A maior contribuição de Lowell para estudos planetários surgiu durante os últimos oito anos da sua vida, os quais dedicou ao então chamado Planeta X, que era a designação para o planeta atrás de Neptuno. A investigação prosseguiu durante alguns anos após a sua morte em Flagstaff, ocorrida em 1916; o novo planeta, chamado Plutão, foi descoberto por Clyde Tombaugh em 1930. Os símbolos astronómicos do planeta estão como "PL" (♇), escolhido por parte para homenagear Lowell. Plutão é agora considerado um planeta anão.


09 março, 2012

O maior meteorito alguma vez recuperado caiu há 36 anos na China

(imagem daqui)

No dia 8 de março de 1976, há 34 anos, ocorreu a queda do maior meteorito rochoso já registada. O Meteorito Jilin caiu perto da cidade de Jilin, na Manchúria, nordeste da China (44° 0′ N, 126° 0′ E).

Foram recuperadas quase 4 toneladas de escombros do meteorito classificado com um condrito tipo H5 e o maior dos pedaços tinha um peso de 1,77 toneladas. Trata-se também do fragmento mais massivo já recuperado de um meteorito.

O impacto produziu uma cratera de 6 metros de profundidade, a cerca de 200 metros da residência mais próxima em Jilin.

(imagem daqui)

01 março, 2012

Há 30 anos uma sonda aterrou em Vénus e tirou as primeiras fotos do solo do planeta

Venera 13 (Russian: Венера-13) was a probe in the Soviet Venera program for the exploration of Venus.
Venera 13 and 14 were identical spacecraft built to take advantage of the 1981 Venus launch opportunity and launched 5 days apart, Venera 13 on 1981-10-30 at 06:04:00 UTC and Venera 14 on 1981-11-04 at 05:31:00 UTC, both with an on-orbit dry mass of 760 kg.

Design
Each mission consisted of a bus and an attached descent craft. The descent craft/lander was a hermetically sealed pressure vessel, which contained most of the instrumentation and electronics, mounted on a ring-shaped landing platform and topped by an antenna. The design was similar to the earlier Venera 9–12 landers. It carried instruments to take chemical and isotopic measurements, monitor the spectrum of scattered sunlight, and record electric discharges during its descent phase through the Venusian atmosphere. The spacecraft utilized a camera system, an X-ray fluorescence spectrometer, a screw drill and surface sampler, a dynamic penetrometer, and a seismometer to conduct investigations on the surface.
List of lander experiments and instruments:
Landing
After launch and a four month cruise to Venus the descent vehicle separated from the bus and plunged into the Venusian atmosphere on March 1, 1982. After entering the atmosphere a parachute was deployed. At an altitude of about 50 km the parachute was released and simple airbraking was used the rest of the way to the surface.
Venera 13 landed at 7.5°S 303°E, about 950 km northeast of Venera 14, just east of the eastern extension of an elevated region known as Phoebe Regio.
The lander had cameras to take pictures of the ground and spring-loaded arms to measure the compressibility of the soil. The quartz camera windows were covered by lens caps which popped off after descent.
The area was composed of bedrock outcrops surrounded by dark, fine-grained soil. After landing, an imaging panorama was started and a mechanical drilling arm reached to the surface and obtained a sample, which was deposited in a hermetically sealed chamber, maintained at 30 °C and a pressure of about 0.05 atmosphere (5 kPa). The composition of the sample determined by the X-ray fluorescence spectrometer put it in the class of weakly differentiated melanocratic alkaline gabbroids.
The lander survived for 127 minutes (the planned design life was 32 minutes) in an environment with a temperature of 457 °C and a pressure of 89 Earth atmospheres (9.0 MPa). The descent vehicle transmitted data to the bus, which acted as a data relay as it flew by Venus.

Venera 13 landing site - left

Venera 13 landing site - right